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Abstract
We investigate the intermediate-and longest-range decay of the total pair correlation function
h(r) in model fluids where the inter-particle potential decays as −r−6, as is appropriate to real
fluids in which dispersion forces govern the attraction between particles. It is well-known that
such interactions give rise to a term in q3 in the expansion of ĉ(q), the Fourier transform of the
direct correlation function. Here we show that the presence of the r−6 tail changes significantly
the analytic structure of ĥ(q) from that found in models where the inter-particle potential is
short ranged. In particular the pure imaginary pole at q = iα0, which generates
monotonic-exponential decay of rh(r) in the short-ranged case, is replaced by a complex
(pseudo-exponential) pole at q = iα0 + α1 whose real part α1 is negative and generally very
small in magnitude. Near the critical point α1 ∼ −α2

0 and we show how classical
Ornstein–Zernike behaviour of the pair correlation function is recovered on approaching the
mean-field critical point. Explicit calculations, based on the random phase approximation,
enable us to demonstrate the accuracy of asymptotic formulae for h(r) in all regions of the
phase diagram and to determine a pseudo-Fisher–Widom (pFW) line. On the high density side
of this line, intermediate-range decay of rh(r) is exponentially damped-oscillatory and the
ultimate long-range decay is power-law, proportional to r−6, whereas on the low density side
this damped-oscillatory decay is sub-dominant to both monotonic-exponential and power-law
decay. Earlier analyses did not identify the pseudo-exponential pole and therefore the existence
of the pFW line. Our results enable us to write down the generic wetting potential for a ‘real’
fluid exhibiting both short-ranged and dispersion interactions. The monotonic-exponential
decay of correlations associated with the pseudo-exponential pole introduces additional terms
into the wetting potential that are important in determining the existence and order of wetting
transitions.

Ode to Richard Palmer and other travellers on the imaginary
axis

Beware this road to Hell
Strange asymmetrical poles lie waiting
Is it really imaginary? For
Surely the integrand is odd.

Fear the curse of Derjaguin
Wonder at Casimir and Lifshitz
Trust in Widom and Enderby
To Verlet via critical Dantchev.

Risking travails of Cauchy’s Theorem
Armed only with the RPA

Taming the asymmetrical poles and
Thereby saving the correlation length.

1. Introduction

We re-visit a problem in liquid-state physics that is easy to state
but has proved difficult to answer satisfactorily: How does the
radial distribution function g(r) of a simple, neutral fluid decay
for large and intermediate values of r , the separation between
the atoms or particles? Specifically we consider models
of atomic (rare gas) fluids where φ(r), the interatomic pair
potential, decays as −r−6 at large separations. Such power-
law decay reflects the presence of induced dipole–induced
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dipole interactions, i.e. dispersion (London) forces, that are
omnipresent in atomic systems and, at larger length scales, in
colloidal fluids. For model fluids with short-ranged potentials,
meaning φ(r) is of finite range or decays exponentially or
faster, the problem is solved and the nature of the asymptotic
and intermediate-range decay of g(r) is well-understood [1–3].
Moreover, the asymptotic analysis has proved valuable in
interpreting the results of computer simulation studies [4]
where the pair potential is truncated and set to zero beyond
some cut-off separation. However, in real fluids r−6 tails are
always present.

Several authors have posed the problem. Widom [5] and
later Enderby et al [6] proposed that g(r) − 1 should decay
asymptotically in the same fashion as φ(r) when the latter
decays as a power-law. In [6] it is argued that if the pair direct
correlation function c(r) decays in the standard way

c(r) → −βφ(r), r → ∞, (1)

then from the Ornstein–Zernike (OZ) equation it follows that
the total correlation function

h(r) ≡ g(r) − 1 → −(ρχT )2β−1φ(r), r → ∞, (2)

where β = (kBT )−1 (T denotes temperature and kB

Boltzmann’s constant), ρ is the number density and χT is
the isothermal compressibility. Equation (1) is valid for state
points away from the critical point where χT and ξ , the
correlation length for density fluctuations, are finite. For states
close to the critical point one should expect equations (1)
and (2) to be valid only for r > ξ , with ξ diverging at
the critical point. By contrast, in dense liquids one expects
to observe the same exponentially damped oscillations that
characterize the decay of h(r) in theories and simulations of
models with truncated pair potentials; the oscillations arise
from the residual effects of packing of the atoms and these
should not depend on the details of the tail of φ(r). Verlet [7]
was one of the first authors to seek a unified description of the
intermediate-range correlations, reflecting residual ordering in
fluids, and the longest-range behaviour, reflecting directly the
power-law decay of the dispersion interactions.

In 1994, the present authors together with Leote de
Carvalho and Hoyle [8], hereafter referred to as Paper I,
developed what we believed was a suitable unified treatment
of the intermediate-and long-range decay of h(r) for a simple
model fluid in which the pair potential φ(r) decays as −a6/r 6.
Our approach was based on the pole structure of the Fourier
transform ĥ(q) in the complex-q plane. The analysis is
not as straightforward as that for models with short-ranged
potentials where ĥ(q) is an even function of the wavenumber
q . Dispersion interactions give rise to a q3 term in ĉ(q) [6, 8]
and hence ĥ(q) has both even and odd terms. We proposed an
explicit approximation for h(r), see equation (38) of Paper I,
that adds the (oscillatory) contribution from the leading-order
pole of ĥ(q) to the slowest power-law contribution, where the
latter is obtained from an expansion about the origin of an
integral along the imaginary q axis. At temperature T =
1.18Tc, where Tc is the critical temperature, and a high liquid
density ρ∗ = ρσ 3 = 0.8 the approximation provides an

excellent fit to numerical results for h(r) defined by the OZ
equation and the random phase approximation (RPA) for ĉ(q),
for r � 2.2σ where σ is the atomic diameter. The results
showed that the slowest decaying power-law contribution, as
given by equation (2), is comparable with the exponentially
decaying contribution for r ≈ 25σ and dominates completely
for r � 35σ . The same approximation was less successful
at a lower density ρ∗ = 0.45 on the same isotherm, where
the oscillations are more strongly damped. Our Paper I did
not focus on the important issue of the decay of correlations
in the neighbourhood of the critical point and, with the
benefit of hindsight, we recognize that had we considered that
region of the phase diagram some of the limitations of the
approximations we made would have been apparent.

Recall that for model fluids with short-ranged potentials
one expects conventional Ornstein–Zernike decay: h(r) ∼
r−1 exp(−r/ξ), for r > ξ , in dimension d = 3. In mean-
field treatments such monotonic decay of the pair correlation
function is associated with a pure imaginary pole q = iα0

of ĥ(q); on approaching the critical point α0 ≡ ξ−1 → 0.
However, when the r−6 tail is present and ĉ(q) has a term in
q3, it is easy to show [8] there is no pure imaginary pole and
therefore the genesis of Ornstein–Zernike decay is not obvious.
We return to this topic in the present paper and attempt to
provide a comprehensive treatment of the asymptotic decay of
correlations valid for all fluid-state points at mean-field level.
It turns out that incorporating dispersion interactions shifts the
pole slightly off the imaginary axis (as well as destroying the
left–right symmetry of poles lying off the imaginary axis) and
it is the presence of this complex pole, with its very small
real part, that gives rise to monotonic Ornstein–Zernike decay
of h(r) at intermediate values of r . This particular pole was
not identified in Paper I but it is crucial to understanding the
different regimes of decay in various regions of the phase
diagram.

Our present analysis also makes contact with the work of
other authors who have investigated the decay of h(r) for states
close to the critical point. Kayser and Raveché [9] considered
a model where the pair potential φ(r) decays as −r−(d+p) for
r → ∞ and assumed that h(r) could be decomposed into
two (additive) contributions. The long-ranged piece hLR(r) is
given by equation (2) for r > r∗ (and is zero for r < r∗)
whereas the ‘short-ranged’ piece hSR(r) has the usual (Fisher)
critical scaling form that is valid for fluids with short-ranged
potentials. The separation r∗ is determined by requiring
hSR(r) = hLR(r) at r = r∗ and the authors find r∗ =
(p − 2 + η)ξ ln(ξ/σ) where η is the critical exponent that
describes the power-law decay of h(r) precisely at the critical
point. For a three-dimensional fluid η ≈ 0.02 and dispersion
interactions correspond to p = 3. Later, Dantchev [10] carried
out an explicit asymptotic analysis of a d-dimensional mean-
spherical model where the interaction between spins decays
as −r−(d+p) for r → ∞ with 2 < d < 4, 2 < p < 4
and d + p � 6. Dantchev expands the Fourier transform of
the potential φ̂(q) in powers of the wavevector q , retaining
terms in q2, q p and q4 only. He finds that h(r) can indeed
be written as a sum of ‘short-ranged’ and long-ranged pieces
and determines explicitly the asymptotic behaviour of each. In
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agreement with [9], Dantchev concludes that cross-over from
‘short-ranged’ to long-ranged decay occurs for r∗ = (p −
2)ξ ln(ξ/σ); recall η = 0 in the mean-spherical model. Thus,
specializing to d = 3 and dispersion interactions, Dantchev’s
analysis implies that Ornstein–Zernike (exponential) decay of
rh(r) is found only in the range ξ < r < r∗ with r∗ =
ξ ln(ξ/σ). For r > r∗ power-law decay should dominate.
Figure 1 of [11] illustrates nicely the different regimes of decay
of h(r) expected for a near critical fluid.

Since Dantchev retains only a finite number of terms in the
expansion of φ̂(q), his analysis cannot capture the oscillations
in h(r) that arise in a fluid. Our present treatment, based
on a liquid-state theory, incorporates oscillatory as well as
Ornstein–Zernike like behaviour. For completeness we should
also mention very recent work of Martynov [12] who addresses
the same problem of asymptotic decay in fluids with dispersion
interactions. However, he fails to identify the subtle nature of
the pole structure of ĥ(q), that is crucial to understanding the
asymptotics when dispersion interactions are present.

It is well-known that medium-and long-range correlations
in liquids and their mixtures determine many aspects
of fluid interfacial phenomena and phase transitions—see
e.g. [1, 2, 13, 14]. In particular, the decay of the density
profile of a fluid and the adsorption of thick films at a substrate,
and the nature of wetting transitions are governed by the same
physics that determines the decay of h(r). Understanding the
latter is therefore a pre-requisite for a proper understanding of
fluid interfaces and the solvation of colloidal particles (we shall
return to some of this history in the discussion section below).

In section 2 we describe the asymptotics of h(r).
Sections 3 and 4 present the results of numerical calculations
for a particular model fluid treated in the RPA. The pair
potential is that employed in Paper I:

φ(r) =

⎧
⎪⎨

⎪⎩

∞ r � σ

−ε σ < r � Rc

−a6/r 6 Rc < r

(3)

with a6, ε > 0 and to ensure continuity at r = Rc we set
a6 = εR6

c . The RPA for this model is defined by

c(r) = chs − βφatt(r), (4)

where chs is the (Percus–Yevick) direct correlation function of
a hard-sphere fluid of diameter σ and the attractive part of the
potential is

φatt(r) =
{−ε r � Rc

−a6/r 6 Rc < r .
(5)

The Fourier transforms ĉ(q) and φ̂att(q) can be calculated
analytically and one finds [8] ĉ(q) = ĉe(q) + ĉo(q), where
ĉe(q) is an even function of q and ĉo(q) = aq3 with a =
βπ2a6/12. This q3 contribution can be seen experimentally
in the small q expansion of the structure factor from neutron
scattering data on liquid argon [15]. Note that the challenges
in identifying the q3 contribution from structure factor data
measured in neutron scattering experiments were discussed

in [15] and in subsequent papers that we shall return to
in section 5. Within the RPA there are no other odd
terms. Closure approximations that go beyond the RPA could
introduce higher odd powers, such as q9—see Paper I. We shall
ignore these higher-order terms in the subsequent analysis.
Although the RPA is a rather crude theory of liquids it has
the important advantage for the present problem of yielding
an analytical expression for ĉ(q) so that the poles of ĥ(q) can
be calculated (numerically) enabling us to test in section 3 the
accuracy of the asymptotic formulae we obtain and to calculate
what we denote a pseudo-Fisher–Widom line (pFW) where
the damped-oscillatory exponential decay of rh(r) becomes
sub-dominant to both monotonic-exponential and power-law
decay, [2, 16]. In section 4 we investigate the behaviour of the
pair correlation function in the approach to the critical point,
comparing the results from approximating ĉ(q) by a power-
series expansion truncated after the q3 term with those from the
full RPA solution. We conclude in section 5 with a summary
of our results for the decay of g(r) and a discussion of the
relevance of our present results for the form of the wetting
potential that determines wetting transitions in real fluids and
for other interfacial phenomena.

2. Asymptotics of h(r) in a fluid with dispersion
interactions

We seek to extract the medium-and long-range parts of the total
correlation function h(r) from

rh(r) = 1

2π2

∫ ∞

0
dq q sin qr ĥ(q) (6)

= 1

2π2
Im

[∫ ∞

0
dq qeiqr ĥ(q)

]

(7)

with the Fourier transform ĥ(q) given by the Ornstein–Zernike
(OZ) equation

ĥ(q) = ĉ(q)

1 − ρĉ(q)
, (8)

together with a direct correlation function of the general form

ĉ = ĉe + ĉo, (9)

where we have omitted the dependence on q . The subscripts
refer to contributions that are even functions of q and odd
functions of q , respectively. Thus,

ĥ = ĥe + ĥo (10)

= ĉe(1 − ρĉe) + ρĉ2
o

D
+ ĉo

D
(11)

D = (1 − ρĉ)(1 − ρĉe + ρĉo). (12)

When (7) is evaluated with Cauchy’s theorem, simple poles
arise at complex values of q = qn defined by

ρĉ(qn) = 1, (13)

with residues determined from

Res{ĥ} = 1

ρ

[
q − qn

1 − ρĉ(qn) − ρ(q − qn)ĉ′(qn) + · · ·
]

q→qn

→ −1

ρ2ĉ′(qn)
. (14)
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Figure 1. Schematic illustration of the pole structure of simple fluid
models that contain dispersion interactions. The crosses denote poles
of ĥ(q), where q ≡ α1 + iα0. The circles denote q# ≡ −α1 + iα0,
which are poles of ĥe and ĥo but not of ĥ. The illustration ignores
higher-order poles contributing to short-range correlations and is for
a state point that lies on the pseudo-exponential side of the pFW line,
i.e. the oscillatory pole of ĥ(q) with α1 ≈ 2π/σ has a larger value of
α0 than the pseudo-exponential pole lying close to the imaginary
axis. If the power-law dispersion interactions are set to zero, to leave
a short-ranged model, then the pair of poles (q, q#) closest to the
imaginary axis coalesce into a single pole on the imaginary axis,
leaving three poles of ĥSR(q), an even function of q—see text.

From (9), (12), (13) it follows that the even and odd residues
are each precisely one half the total residue:

Res{ĥe} = Res{ĥo} = 1
2 Res{ĥ}. (15)

In addition, we note from the second factor in (12), that ĥe and
ĥo both possess an additional pole at q = q#

n ≡ −q∗
n , where

superscript ∗ denotes the complex conjugate—see figure 1. For
this pole one can readily show that

Res{ĥe} = −Res{ĥo} = −1

2ρ2
(
ĉ′

e(q
#
n) − ĉ′

o(q
#
n)

) . (16)

Below we shall typically refer to residues in the form

Rn ≡ qnRes{ĥ}, (17)

R#
n ≡ 2q#

n Res{ĥe}. (18)

The symmetry of the relationship between these poles leads to
the result that Rn is the complex conjugate of R#

n .
We have already demonstrated numerically (within an

explicit RPA calculation) in Paper I that for all fluid states there
should be a pole of ĥ lying in the top-right quadrant of the
complex q plane; namely qosc ≡ α1 + iα0 with α1 ≈ 2π/σ ,
where σ is the atomic diameter which hereafter will be taken
as our unit of length. This pole gives rise to exponentially
damped-oscillatory decay of rh(r). An important point to note
is that the presence of dispersion forces (the inclusion of odd
symmetry) prevents q#

osc = −α1 + iα0 from being a pole of
ĥ. One can see this reflected in (16); i.e. for this pole the total
residue Res{ĥe} + Res{ĥo} = 0 in complete contrast to the
pole in the right quadrant which is of the class (15). We also
remark in Paper I that the odd symmetry contribution prevents
the existence of any pole lying precisely on the imaginary axis.
Hence, a mathematical problem arises in trying to identify non-
oscillatory, exponentially decaying correlations. Physically we

should expect such OZ decay to manifest itself near the critical
point. Recall that for short-ranged forces, without dispersion
force contributions, OZ decay of rh(r) is associated with a
pure imaginary pole iα0 and the ‘true’ correlation length ξ is
1/α0 with α0 → 0 on approaching the critical point. In order
to gain insight into this issue, we expand ĉ(q) in powers of q
about q = 0, up to and including order q3. We shall refer to this
as a generalized Ornstein–Zernike (GOZ) expansion truncated
beyond order q3:

ĉ(q) = c(0)
e + c(2)

e q2 + aq3, (19)

where the coefficients of the even symmetry component are
defined by taking successive derivatives evaluated at the origin
c(0)

e = ĉ(0), c(2)
e = ĉ′′(0)/2. The limiting value is linked to

the q = 0 limit of the structure factor of the fluid S(0) =
1/[1 − ρĉ(0)] = ρβ−1χT and we can define a GOZ ‘second
moment’ correlation length ξ2 from

ξ 2
2 ≡ −ρc(2)

e S(0) = R2 S(0), (20)

where R is the usual persistence length. To the same order
as (19) a pole of ĥ(q) is a solution of

S−1(0) = ρc(2)
e q2

n + ρaq3
n + · · · , (21)

or, defining a1 ≡ −a/c(2)
e ,

1 = −(qnξ2)
2(1 − a1qn + · · ·). (22)

Note that a1 is a (microscopic) length. Substituting qn ≡
α1 + iα0 and working only to leading-order in the real and
imaginary parts, yields

α0ξ2 = 1 (23)

2α1ξ
2
2 = −a1. (24)

Equation (23) implies that the GOZ ‘second moment’
correlation length is equal to the ‘true’ exponential decay
length ξ = α−1

0 to this order, as anticipated, but (24) requires
substantial further explanation. Firstly, note that physical
values of a1 are positive, so that this pole of ĥ lies in the
left quadrant. Secondly, in this expansion about the mean-
field critical point, α1 is of order σα2

0 and so this pole tends
asymptotically to the imaginary axis in the approach to the
critical point. For this reason we shall refer to it as the pseudo-
exponential pole (qpexp). Of course this pole will be present at
other state points; it was not identified in Paper I. Note also that
in the limit a1 → 0, where the dispersion interactions vanish,
α1 → 0 and we recover the pure imaginary pole.

When one attempts to use Cauchy’s theorem with (7) to
evaluate the contributions to rh(r) from both the oscillatory
and pseudo-exponential poles one appears to run into
insuperable difficulties due to the asymmetrical nature of
the pole distribution. Instead, the only viable option seems
to be to close the contour around the upper right quadrant
alone, thereby capturing the damped-oscillatory structure at
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wavelengths σ or smaller, but leaving an integral along the
imaginary axis (see equation (16) of Paper I):

I ≡ 1

2π2
Im

[∫ ∞

0
d(iα0)(iα0)e

−α0r ĥ(iα0)

]

(25)

= 1

2π2

∫ ∞

0
dy e−yr iyĥo(iy), (26)

= a

2π2

∫ ∞

0
dy y4 e−yr

D(iy)
, (27)

where we note that only the odd contribution ĥo contributes
and that hereafter we have specialized to the RPA where
ĉo(q) = aq3, see section 1. This class of integral is well-
behaved because of the exponential cut-off at large y and is
often evaluated by successive integration by parts, equivalent
to expanding 1/D as a Taylor series in y from the origin. The
leading-order contribution follows trivially from noting that
1/D(0) = S2(0) and the next few terms are readily obtained
from the Taylor series [6]:

2π2

a
Iplaw = I5 S2(0)

r 5
− I7S3(0)ρĉ′′

e (0)

r 7

+ I9

r 9

[
S3(0)ρĉ′′′′

e (0)

12
+ 3S4(0)ρ2

(
ĉ′′

e (0)
)2

4

]

+ · · · (28)

where subscript plaw denotes power-law and In = (n − 1)!.
In Paper I we argued that combining the first (slowest) term
in this series with the damped-oscillatory contribution from
the pole at qosc should constitute a good approximation for
rh(r). However, from the present analysis it is immediately
apparent that this power-series expansion fails to capture the
contribution to I arising from the presence nearby of the qpexp

pole. In fact, the integrand of (27) is proportional to ĥo and
hence, as discussed previously, is equally affected by the q#

pexp
pole in the right quadrant. Our conjecture, which is tested
numerically in section 3, is that the integral I must also yield
a non-oscillatory exponentially decaying correlation that can
be accurately defined by expanding the denominator of the
integrand of (27) about qpexp and q#

pexp. From the geometry
illustrated in figure 1, this alternative expansion is given by

D(iy) = (iy − qpexp)(iy − q#
pexp)ρ

2
(
ĉ′

e + ĉ′
o

)

qpexp

× (
ĉ′

e − ĉ′
o

)

q#
pexp

+ · · · . (29)

Thus, to leading-order, we can write

1

D(iy)
= ρ2

α2
0 + α2

1

[
Rpexp R#

pexp

(y − α0)2 + α2
1

]

, (30)

where α0 and α1 refer to the pseudo-exponential pole of
ĥ. This yields an approximate expression for I proportional
to the product of two residues (or equivalently the pseudo-
exponential pole residue times its complex conjugate):

2π2

a
Ipexp = ρ2|Res{ĥ}|2e−α0r

∫ ∞

0
dy y4 e−(y−α0)r

(y − α0)2 + α2
1

.

(31)
Provided the integrand is relatively sharply peaked about y =
α0 this will yield a non-oscillatory exponential contribution.

Thus we arrive at what one might define as a pseudo-Fisher–
Widom (pFW) line, i.e. the line in phase space in which the
imaginary part of qpexp is equal to the imaginary part of qosc.
On the side of the pFW line closest to the liquid–vapour
critical point the non-oscillatory exponential contribution, with
inverse decay length α0 given by the imaginary part of qpexp, is
longer ranged than the usual damped-oscillatory correlations
associated with qosc and wavelength ≈σ . We have yet again
introduced the caveat ‘pseudo’, this time to remind readers that
the true asymptotic correlations are power-law and these will
often hide the physics associated with the pseudo-exponential
poles, particularly on the other (high density) side of the pFW
line where the non-oscillatory exponential decay of rh(r) is
sub-dominant at all values of r .

The conjecture that we shall test numerically below is
that whenever one is on the non-oscillatory side of the pFW
line, a good approximation to the medium-range and long-
range correlations will be to simply add the leading-order
contributions from all three different classes of physics, i.e. we
investigate the accuracy of the approximation

rh(r) = 1

π
Im

[
iRosce

iqoscr
] + Ipexp + Iplaw, (32)

where Rosc is the residue of the oscillatory pole. On the other
side of the pFW line one can neglect Ipexp. Note that in this
approach it is not appropriate to continue the expansions for
Ipexp and Iplaw beyond leading-order, since the simple sum
in (32) requires a good separation between the parts of the
integrand that are estimated by the respective expansions. In
this regard, it is instructive to also apply the expansion about
the mean-field critical point introduced earlier, this time to
estimate Ipexp. One readily finds from (29) that

D(iα0) → 4α2
1α

2
0

(
ρc(2)

e

)2 = 4D(0)α2
1ξ

2, (33)

which evaluates (30). One can then ask for an estimate of the
integral (27) in terms of a pure exponential, from the part of
the integrand captured by Ipexp,3:

∫ ∞

0
dy y4 e−yr

D(iy)
≈ π |α1|α4

0e−α0r

D(iα0)
. (34)

The resulting cross-over interpolation to the integral I
throughout the GOZ region of the mean-field critical point is

I ≈ aS2(0)

2π2

[
I5

r 5
+ π

2a1

e−r/ξ

ξ 4

]

. (35)

Note that the second term in equation (35) does not
depend on the coefficient a. Indeed this term reduces to
exp(−r/ξ)/(4πρR2), the standard OZ result for rh(r), as one
would expect in the limit a → 0.

The above arguments have assumed a simple fluid model
where correlations are captured at least qualitatively by the
RPA. Namely, there are never more than two poles of
ĥ(q) lying close to the real axis and these poles lie in
different quadrants of the upper-half complex wavenumber

3 Note that
∫ ∞
−∞ dx

α2
1

x2+α2
1

= π |α1|.
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Figure 2. The pseudo-Fisher–Widom line in the proximity to
liquid–vapour coexistence, calculated from the RPA. The full line
denotes the binodal (coexistence curve) which, in the RPA, obeys
corresponding states. The dashed lines labelled with values of Rc

show the pFW lines of our present model (3)–(5). For state points
below a given pFW line damped-oscillatory decay is sub-dominant to
both monotonic-exponential and power-law decay. The dashed line
labelled SW model is the FW line of the standard square-well model
(with Rc = 1.5σ ), calculated from the RPA. We note that the latter
has the same unscaled critical temperature as for Rc ≈ 1.2σ in the
present model, so that pFW lines do not display corresponding states
(even approximately).

plane. All other poles are much further from the real
axis. The longest-range correlations are the power-law
terms contained in the integral I through a power-series
expansion about the origin, while an expansion about qpexp

and q#
pexp is needed to capture medium-range, non-oscillatory,

exponentially decaying correlations. The cross-over in the
decay lengths of the oscillatory and pseudo-exponential pole
contributions defines a pseudo-FW line. These conjectures
imply that the physics of a model with dispersion forces is
similar to that of a model where the interatomic forces are
strictly short ranged, despite the dramatically more complex
mathematics required to describe it. In particular, the
imaginary part of the pseudo-exponential pole continues to
play the role of an inverse bulk correlation length well beyond
the strict critical region (not correctly captured by the RPA).
In the next two sections we shall demonstrate numerically the
validity of these conjectures for the model fluid introduced
in Paper I. This model and the RPA that we employ are
described in section 1. In the final section we present a
general overview of mean-field correlations in simple fluids,
including their relevance to wetting phenomena and colloidal
physics.

3. Results of calculations of pair correlation
functions and cross-over

Figure 2 shows results of calculations of the pFW line
and the liquid–vapour coexistence curve (binodal), from
the RPA treatment of the model fluid defined by (3)–
(5) for different values of Rc. In this plot, all states
below a given pFW line are associated with asymptotic
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Figure 3. Numerical results for the total correlation function h(r)
calculated from the RPA, compared with liquid-state asymptotics
developed in section 2. Symbols denote (numerically) ‘exact’ results
from the RPA of our model (3)–(5) at Rc = 1.5σ , for the state point
on the critical isochore at T/Tc = 1.1 corresponding to S(0) = 4.01.
The upper full line labelled (32) is the result of equation (32), which
includes the leading-order power-law contribution Iplaw. The lower
full line labelled (32) pexp is the contribution Ipexp alone. Note that
for this state point the oscillatory pole qosc makes a negligible
contribution over the entire range plotted, r > 4σ . The dashed curve
labelled (35) shows the result of the cross-over interpolation
formula (35), combining the monotonically decaying exponential
approximation, the straight dashed line (35) exp, and the
leading-order power-law approximation (35) plaw. Note that results
are plotted as a function of r/σ , the reduced separation.

decay for which damped-oscillatory exponential decay is
sub-dominant to both monotonic-exponential and power-law
contributions. It is straightforward to show that within
the RPA the reduced critical density ρcσ

3 = 0.245 7358
is independent of the choice of φatt(r) and, for a given
choice of chs(r), the binodal obeys corresponding states
exactly. In contrast, figure 2 implies that the pFW line
does not obey even an approximate corresponding states.
Rather, the presence of dispersion interactions favours the
dominance of monotonic-exponential decay over damped-
oscillatory correlations and when combined with increasing
Rc, the range of an intermediate attractive square-well, the
pFW line shifts to higher densities. The results presented
in the remainder of this section are restricted to the choice
Rc = 1.5σ ; in particular, we reconsider figure 5 of Paper I
which used this same choice to compare the full RPA solution
to results of asymptotic theory but omitting the monotonic-
exponential term Ipexp introduced in the previous section. First
it is instructive to choose a state point on the critical isochore
that is sufficiently close to the RPA critical point to enable
an unambiguous test of the validity of the asymptotic analysis
leading to (32) and (35).

Figure 3 shows numerical results for the logarithm of
rh(r) at reduced temperature T/Tc = 1.1 on the critical
isochore ρc. The oscillatory pole makes no observable
contribution over the entire range of the plot. Thus, here
we are testing our ability to separate power-law correlations
from monotonic-exponential decay. The symbols plotted are
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full numerical solutions of the RPA4, while the various curves
display the results of the asymptotic theory developed in
section 2. One point to emphasize is that numerically the
power-law expansion (28) behaves as if it has zero radius of
convergence about α0 = 0 and hence r = ∞. For a finite
value of r one can only include a finite number of terms in this
expansion before it breaks down. Moreover, if the expansion is
restricted to leading-order there remains an unphysical region
at low values of r . In figure 3 this manifests itself by an
increasing upturn in the dashed curve labelled (35) plaw as
r is reduced below 15σ and the more terms from (28) that
one includes the sooner this unphysical region is reached.
In contrast, the term Ipexp in (32) is best suited to this
intermediate range; see the solid curve labelled (32) pexp.
In the region where the leading-order power-law contribution
is not unphysical (r > 15σ in figure 3), we see that
ansatz (32) that adds the two contributions is a remarkably
good approximation—see solid curve labelled (32). The small
discrepancy is due presumably to double-counting involved
in combining an expansion about the origin of the complex
plane with an expansion about the pair of pseudo-exponential
poles5. This approach will fail if the domains of these
expansions overlap significantly. Accordingly, for r > 30σ in
figure 3 it is more appropriate to replace the expansion about
the pseudo-exponential poles with additional terms from the
power-law expansion (28) and the larger the value of r the
more terms one can use before the convergence breaks down.
The dashed lines in figure 3 display the result of the cross-over
interpolation formula (35) combining the leading-order power-
law contribution and the exponential decay (the straight dashed
line); we shall return to this formula in section 4 below.

Having confirmed and elucidated the validity of our
asymptotic theory for the simultaneous presence of power-law
and monotonic-exponential contributions, we return to figure 5
of Paper I. This figure chose to contrast two state points at
T/Tc = 1.18: (a) ρ∗ = 0.8 and (b) ρ∗ = 0.45. From figure 2
one notes that these states lie almost equidistant on opposite
sides of the pFW line for Rc = 1.5σ . Accordingly, for case (a)
we do not expect any significant contribution from the pseudo-
exponential pole in (32). As mentioned in the Introduction this
was indeed confirmed in Paper I where the sum of the first

4 ĉ(q) is given explicitly in section 3.2 of paper I the formally infinite sum in
the expression (36) of paper I being restricted to the first 200 terms. The OZ
equation (8) can be then be inserted into (6) to give rh(r) by direct numerical
evaluation, provided one introduces a smooth cut-off at an appropriate value
of q beyond the region of physical relevance to the required range of r . We
found it convenient to divide the integral into blocks and expand the integrand
of each block as a series of at least 100 polynomials, prior to integration. The
entire numerical procedure was tested for stability and lack of sensitivity to
the parameters adopted, as well as a direct comparison with the previously
published results in figure 5(b) of Paper I that had been obtained with a
different method now obsolete with the passage of time.
5 In fact, one can correct for this analytically in the GOZ limit of the RPA.
Since α2

1 	 α2
0 the limit y → 0 of (30) is very close to α2

1/[α2
0 D(iα0)],

which in the GOZ limit (33) becomes 1/4D(0). Thus the expansion (29) about
the pseudo-exponential poles generates almost precisely 1/4 of the expansion
about the origin. To correct for this over-counting one only need replace
the final term in (32) by (3/4)Iplaw. This improved approximation is almost
indistinguishable from the full RPA results plotted in figure 3. The power-law
term remains unphysical at smallest r and now there is a hint that additional
power-law terms might be relevant at largest r , but in the intermediate regime
the improved version of (32) is essentially exact.
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Figure 4. Numerical results for the total correlation function h(r)
calculated from the RPA, compared with liquid-state asymptotics
developed in section 2. Symbols denote (numerically) ‘exact’ results
from the RPA of our model (3)–(5) at Rc = 1.5σ , for the state point
belonging to figure 5(b) of paper I: T/Tc = 1.18 at a reduced density
ρ∗ = 0.45, corresponding to S(0) = 0.476. The full line is
calculated from equation (32); for r < 6σ the power-law term is
excluded since in this range the expansion about the
pseudo-exponential poles provides a very accurate estimate of the
integral I in (27). The two dashed curves show the individual
contributions to (32), i.e. the leading-order power-law (32, 35) plaw
and the term Ipexp labelled (32) pexp; for this state point the
oscillatory pole makes a negligible contribution over the range
r > 10σ . Note that results are plotted as a function of r/σ , the
reduced separation.

and third terms provided an excellent fit. There is a simple
cross-over at around r = 25σ between damped-oscillatory
decay and the leading-order power-law decay. However, for the
lower density the monotonic-exponential correlations, given by
Ipexp and now lying intermediate between damped-oscillatory
and power-law decay, that were omitted in Paper I should
be important. In figure 4 this expectation is confirmed. For
r < 6σ the leading-order power-law contribution is unphysical
and is excluded, while the sum of the leading-order damped-
oscillatory and pseudo-exponential contributions is extremely
accurate. For r > 6σ the full curve in figure 4 shows the result
of (32) and we note that with Ipexp included there is no longer
an intermediate region where the asymptotic formula breaks
down. One should compare the quality of the fit to the full
numerical RPA results in figure 4 with that given in figure 5(b)
of Paper I; the former is much superior. We do observe
some small discrepancy presumably due to our combining two
expansions, which gets progressively worse at larger r such
that when r > 15σ it is more appropriate to replace the
expansion about the pseudo-exponential poles with more terms
in the expansion (28) about q = 0. Although it would be
possible to adjust, as a function of r , the number of power-
law terms used to fit the intermediate region 6σ < r < 15σ ,
we conclude from the structure of the integrand of (27) that
such a procedure is unphysical and that we have truly identified
a monotonic-exponential decay in this region. Of course, the
closer one gets to the pFW line the less easy it is to identify
this type of decay, because of the increasing encroachment of
the damped-oscillatory behaviour indicative of a dense liquid
state.
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Figure 5. Scaling properties of the pseudo-exponential pole in the
approach (along the critical isochore) to the critical point calculated
for our model (3)–(5) at Rc = 1.5σ . The symbol O denotes |α1σ |,
the modulus of the real part, and symbol + denotes α2

0σ
2, the square

of the imaginary part, calculated numerically from the RPA, while
the curves are the GOZ predictions defined by (20), (23), (24). The
near linear behaviour of α2

0 is appropriate to the mean-field
divergence of the correlation length ξ = 1/α0. t ≡ T/Tc − 1.

4. Results of mean-field calculations of pair
correlations in the approach to the critical point

In the approach to the mean-field (MF) critical point the
correlation length ξ = α−1

0 , describing the monotonic-
exponential decay and the amplitude of the power-law
dispersion contribution ∼S2(0), diverge while the damped-
oscillatory decay remains short ranged and hence increasingly
irrelevant for the asymptotics. The points plotted in figure 5
trace the behaviour of the real and imaginary parts of the
pseudo-exponential pole in the approach to the RPA critical
point, along the critical isochore calculated for Rc = 1.5σ . The
curves show the associated GOZ predictions. As is appropriate
to MF, we expect ξ ∼ t−1/2 and therefore α2

0 ∼ t , for
t ≡ T/Tc − 1 → 0 and this is indeed observed. The
GOZ prediction (20), (23) for α2

0 is obeyed for t � 0.06
implying that the ‘true’ correlation length ξ and the GOZ
‘second moment’ correlation length ξ2 are almost the same in
this region. As t → 0 the two correlation lengths become
identical. The plot of the real part of the pole α1 shows
that the other GOZ prediction |α1| ∼ α2

0 from (20), (24)
is also valid over an extended region from the critical point.
Our calculations therefore indicate that the pseudo-exponential
pole approaches asymptotically close to the imaginary axis as
t → 0 and therefore the decay of rh(r) becomes that of a pure
exponential, i.e. OZ decay is recovered.

The competition between the exponential decay and the
power-law decay of correlations is described by the cross-
over interpolation formula (35). In figure 3 we plot the
ingredients of this cross-over behaviour for the state point at
T/Tc = 1.1 on the critical isochore. The straight dashed
line labelled (35) exp provides a compromise straight-line fit in
the range over which the pseudo-exponential poles dominate,
while the leading-order power-law labelled (32, 35) plaw tends
only slowly to the asymptotic form. In between, we see

that (35) describes a cross-over interpolation, rather than a
good fit to the full RPA results. Note that (35) contains
the same unphysical power-law correlations at r < 15σ , as
discussed previously. Only at larger values of r can one use
the cross-over interpolation to determine a rough boundary to
the exponential decay, beyond which the power-law dominates.
This boundary at r∗ is therefore defined by requiring the two
terms in (35) to be equal at r∗:

I5

r∗5
= π

2a1

e−r∗/ξ

ξ 4
. (36)

Defining x ≡ r∗/ξ and A ≡ πξ/48a1 (36) reduces to solving
the equation

x − 5 ln x = ln A. (37)

If the right-hand side is greater than 5 − 5 ln 5 then this
equation has two solutions, of which only the larger value
is physical. From figure 5 we note that a1 is approximately
σ/2 and so there will be a cross-over for all α0σ < 2.75
i.e. ξ > 0.36σ , which more than encompasses the entire length
of the saturated liquid curve below the pFW line in figure 2.
Thus, below the pFW line it is only for very dilute gas states
with very short correlation lengths that there will be no solution
to equation (37) and hence no intermediate-range monotonic-
exponential decay.

In close proximity to the critical point the above analysis
reproduces the result obtained by Dantchev for the mean-
spherical model [10] mentioned in section 1. As ξ diverges
the cross-over moves to infinity, such that exactly at the critical
point the dispersion interactions are totally irrelevant. More
specifically, as ξ → ∞ we find from (37) that the cross-over
separation

r∗ = ξ(ln(ξ/σ) + 5 ln ln(ξ/σ) + · · ·), (38)

which agrees with equation (3.14) of [10] pertaining to
dispersion interactions in d = 3. Let us also emphasize that
because of the very weak divergence of the logarithm, there is
a relatively restricted range ξ < r < ξ ln(ξ/σ) over which the
monotonic-exponential decay is dominant.

5. Discussion

This paper has focused on understanding the nature of
the decay, at intermediate and longest range, of the pair
total-correlation-function h(r) in model fluids that exhibit
dispersion interactions. We have identified a pseudo-
exponential pole of ĥ(q) that was not identified in the analysis
carried out in Paper I.

The presence of this complex pole, which lies close to but
not on the imaginary axis, is key to understanding OZ decay
of correlations in this class of fluids and therefore plays an
important role in determining h(r) for states approaching the
critical region. The analysis of section 4, based on the RPA
treatment, elucidates the cross-over from OZ decay to power-
law behaviour (2) at mean-field level. The resulting cross-over
formula (35) is equivalent to that derived by Dantchev [10]
in an explicit calculation for the mean-spherical model. Both
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analyses omit critical fluctuation effects. Dantchev discusses
how his analysis might be modified for models where the
critical exponent η 
= 0. He concludes that the cross-over
separation r∗ should be given, at lowest order, by r∗ = (p−2+
η)ξ ln(ξ/σ) in agreement with the earlier conjecture of Kayser
and Raveché [9]. Thus for dispersion forces in d = 3 where
p = 3 and η ≈ 0.02 there is little change in the estimate of r∗.
Although our present analysis cannot capture the subtleties of
true critical phenomena, we believe that it provides new insight
into the genesis of OZ behaviour and cross-over to power-law
decay of h(r) for finite values of the correlation length ξ .

As stated in section 1, in Paper I we paid most attention to
a high density state ρ∗ = 0.8, T = 1.18Tc which we now
know is well above the pFW line (see figure 2) so that the
pseudo-exponential pole is of no significance. Nevertheless,
it is important to put the record straight by pointing out the
shortcomings of the approximations introduced in Paper I. The
weakness lies in the evaluation of the integral (25) along the
imaginary axis. In Paper I only the power-law contribution
Iplaw (28) was considered since no pseudo-exponential pole
was identified. It follows that equation (23) in Paper I omits
any contribution arising from the pseudo-exponential pole of
ĥ(q) close to the imaginary axis; recall that this pole lies in
the left quadrant whereas the sum in equation (23) of Paper I
is over poles in the right quadrant only. The statement below
equation (23) of Paper I is incorrect. Hoyle [17] points this out
and indicates there could be additional exponentially decaying
terms. However, he does not identify the pseudo-exponential
pole.

What is the relevance of our analysis for real (atomic)
fluids? Considerable effort has been expended on extracting
a q3 term in the expansion of ĉ(q) from measurements of the
structure factor of rare gas fluids. Much of this work was
stimulated by the influential paper of Reatto and Tau [18] who
investigated the effects of including an Axilrod–Teller three-
body contribution in the interatomic potential function. They
find that the coefficient of the q3 term acquires an additional
contribution proportional to βνρ, where ν is the amplitude
of the Axilrod–Teller potential. Subsequent experimental
work finds strong evidence for a q3 term in ĉ(q). Benmore
et al [19] performed careful small-angle neutron diffraction
measurements, at fixed (room) temperature, of the static
structure factor of Kr at low (gaseous) densities in order to
determine ĉ(q) at small q . From least squares fits of their
data to a cubic polynomial (see (19)) they demonstrated that
the coefficient a6 of the −r−6 term in the pair potential could
be extracted and, by considering the density dependence, an
estimate of ν could be obtained. Bonetti et al [20] performed
small-angle neutron scattering experiments on Kr, but now for
states in the vicinity of the critical point. These experiments
also confirm the existence of the q3 term but could not deduce
the amplitude ν of the Axilrod–Teller potential. Experimental
neutron diffraction data at low q on liquid Kr is well-
fitted by accurate liquid-state theories, such as the modified-
hypernetted-chain and hierarchical-reference-theory, applied
to the Aziz–Slaman pair potential augmented by the Axilrod–
Teller three-body potential [21, 22]. Reatto and Tau [18]
also considered the effects of retardation; for sufficiently large

separations the leading-order −r−6 decay of the pair potential
φ(r) crosses over to −r−7 decay. The authors point out that
such behaviour demands that a q4 ln q term replaces the q3

term in the limit of q → 0. Clearly this complicates the
analysis. However, Reatto and Tau estimate that retardation
effects should only become significant for q � 0.5 nm−1;
q3 behaviour should be observable in the range 1 < q <

4 nm−1, which is well within the range accessible to neutron
experiments. Our present analysis details the consequences of
having a q3 term in ĉ(q) for the decay in real space of the
pair correlation function h(r). Of course, with sufficiently
accurate experimental data one could Fourier transform the
measured structure factor and obtain h(r) directly and in
principle one could test the theories described here. In practice,
it remains a challenging task to obtain a sufficiently accurate
pair correlation function at intermediate and long range to
observe the ultimate power-law decay.

For colloidal systems it is possible to measure h(r)

directly in real space by tracking particle coordinates using
confocal laser scanning microscopy. Current experiments, with
three-dimensional images, provide accurate data out to about 7
oscillations in h(r), see e.g. [23] for data from colloid–polymer
mixtures, but larger separations pose severe challenges.

Our results have significant repercussions for the physics
of interfacial phenomena. Indeed, much of the theoretical
foundation of colloid and interface science was based on the
quantum mechanical prediction of power-law (dispersion or
London [24]) forces [25]. On the other hand, the earlier
ground-breaking paper of van der Waals [26] on the liquid–
vapour interface is a density functional treatment that does
not capture the complications of dispersion interactions and
power-law correlations. The latter are usually a sign of
fluctuations present at multiple length scales (as in fluid critical
phenomena) and remarkably Casimir was able to derive the
power-law nature (and the amplitude) of dispersion forces
directly from relativistic quantum-field theory that assumes a
‘seething’ vacuum [27]. Lifshitz and co-workers were later
to develop a high-temperature-field theory specifically tailored
to the calculation of dispersion force contributions to the
stability of interfacial (wetting) films [28]. That the physical
significance of the general asymptotic theory of liquid-state
physics is dramatic for wetting phenomena (for classic reviews
see [29–31]) is now well-recognized [1, 13, 14]. Fluid
mediated correlations between the two interfaces of a thick
planar film are controlled by the same set of correlation lengths
as define the asymptotic and medium-range behaviour of the
radial distribution function of the wetting phase [13, 14]. Thus
the equilibrium growth of thick films (adsorption) and the
presence/order of wetting transitions are extremely sensitive
to the details of asymptotic structure. Here we focus on
adsorption from bulk gas so that correlation lengths refer to
the liquid phase.

The basic physics was first recognized by the Russian
School of Frumkin and Derjaguin [32] who emphasized the
ultimate dominance of power-law dispersion interactions. The
best known case is the transition to complete wetting from off
bulk coexistence where the relevant contribution to the wetting
or interface potential V () can be written, for non-retarded
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interactions, as a−2 + δμ�ρ, where  is the film thickness,
δμ is the deviation of the chemical potential of the bulk gas
from its value at coexistence, a > 0 and �ρ = ρl − ρv ,
the difference in densities of coexisting liquid and gas. The
equilibrium film thickness e ∼ (δμ)−1/3 as δμ → 0, a
result that is confirmed for real fluids [29–31]. However,
as is also well-known the existence and order of wetting
transitions are controlled partly by sub-dominant correlations
when the dispersion forces act to thicken the film at all
thicknesses. These so-called structural contributions to the
wetting potential (that enters the interface Hamiltonian) decay
exponentially, with decay lengths defined by the imaginary
parts of the poles of ĥ(q) in figure 1. At leading-order
the oscillatory pole qosc = α1 + iαosc

0 with α1 ≈ 2π/σ

leads only to an oscillatory modulation of the asymptotic
decay which can safely be ignored due to strong damping
of the oscillatory amplitude from the presence of capillary-
wave fluctuations (in contrast, capillary-wave fluctuations in
three-dimensional systems cannot renormalize a power-law
decay and will typically only weakly modify a monotonic-
exponential decay) [13, 14]. However, the wetting potential
contains contributions proportional to the square of the density
deviations, arising from interference between interfaces on
each side of the adsorbed film, and so the oscillatory pole
also generates a monotonic-exponential correlation with decay
length 1/2αosc

0 . The pseudo-exponential pole generates
standard MF exponential correlations with decay lengths
1/α

pexp
0 and 1/2α

pexp
0 . It is known that these correlations can all

play a qualitative role in wetting transitions, depending on the
relative sizes of the respective decay lengths and the sign of the
amplitude with which they contribute to the wetting potential.
The form of the resulting, multi-regime, wetting potential
belonging to models with short-ranged interactions only has
been known for some time [13] and has been confirmed
directly from density functional calculations [14]. In these
papers the subtlety of incorporating dispersion interactions
into theories that describe properly short-and intermediate-
range correlations was emphasized. One particular aspect,
see section IV of [14], concerned the issue of monotonic,
exponentially decaying contributions to the wetting potential
V (). Since the pseudo-exponential pole had not been
identified in Paper I, the origin of such contributions, i.e. those
that constitute the ‘standard’ MF wetting potential used in
theories of wetting transitions near the critical point for models
with short-ranged interactions, was not understood when
dispersion interactions were included. Note that equation (25)
in [14] includes only a contribution from the oscillatory pole,
along with power-law dispersion terms. Here, having now
identified the pseudo-exponential pole, we can finally resolve
this issue, in particular, with reference to the pFW lines in
figure 2. Recall that these lines are relevant since it is the liquid
phase that constitutes the adsorbed film.

If the wetting transition is between two macroscopically
thick films then it will be controlled by power-law dispersion
contributions to V () at leading-order and beyond [31];
this is the model favoured by the Russian School. If
the transition is between a microscopically thin film and a
macroscopically thick film, then it is likely that exponentially

decaying correlations are involved, along with the leading-
order power-law decay. At high temperatures, below the
pFW line in figure 2 the dominant exponential correlation has
a decay length 1/α

pexp
0 . Only for saturated liquid states at

low temperatures lying on the binodal above the pFW line
will sub-dominant exponential correlations with decay length
1/2αosc

0 become relevant. The MF wetting potential relevant
to essentially all liquid–vapour systems in the presence of a
spectator ‘wall’ should therefore take the form

V () = a−2 + b−3 + c exp(−2αosc
0 ) + d exp(−α

pexp
0 )

+ e exp(−2α
pexp
0 ), (39)

where the amplitudes c, d and e are partly renormalized
by capillary-wave fluctuations. Equation (39) should be
contrasted with equation (25) of [14] which omits the final
two terms arising from the pseudo-exponential pole. This
form assumes that the infinitely repulsive part of the potential
preventing negative adsorption is described by one of the sub-
dominant terms, otherwise even higher-order correlations or
an explicit short-ranged wall–fluid potential would have to be
included for the thin film regime. Furthermore, by analogy
with the results for rh(r) in figures 3 and 4, we expect
the power-law contributions to V () to become unphysical
before the thin film limit is reached. One must also note
the recent advance of Parry et al [33] who have developed a
systematic method of generating sub-dominant terms in the
interface Hamiltonian for models with short-ranged (Ising like)
interactions that implies subtle non-local modifications that
go beyond a simple capillary-wave renormalization of the
amplitudes. Setting these various complications aside, (39)
can be considered as the general wetting potential for a ‘real’
fluid with dispersion interactions. One could examine the
validity of (39) by performing explicit MF density functional
theory calculations of V () following the strategy adopted for
a cut and shifted Lennard-Jones fluid adsorbed at a planar
substrate that exerts an external potential of finite range [14],
but now employing models that include dispersion interactions.
The set of decay lengths extracted from both the oscillatory
and pseudo-exponential poles and the accompanying FW lines
would form the basis for such an analysis. Care is required
at the cross-over between different regimes, where two decay
lengths are equal; in particular, if the fit to the wetting
potential requires exchanging the signs of two amplitudes
then they must simultaneously pass through infinity at this
temperature [14, 34]. The comparison between cross-over
lines in models with dispersion interactions and the square-
well model, shown in figure 2, implies that the presence of
dispersion interactions significantly reduces the region of the
phase diagram in which the sub-dominant structural decay
from the oscillatory pole, i.e. the term c exp(−2αosc

0 ), is
important.
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